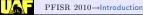

PFISR 2010→Introduction

Observations of Ion-Neutral Coupling in the Auroral Thermosphere Above Poker Flat, Alaska

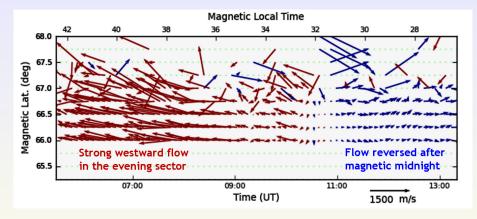
M. G. Conde and D. L. Hampton¹, M. Nicolls²

¹Geophysical Institute, University of Alaska Fairbanks


²SRI International, Menlo Park, California, USA

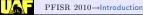
Outline

In this talk, I will describe how the PFISR radar and the Poker Flat all-sky imaging Fabry-Perot spectrometer can be used together to study energy and momentum coupling between thermospheric ions and neutrals.

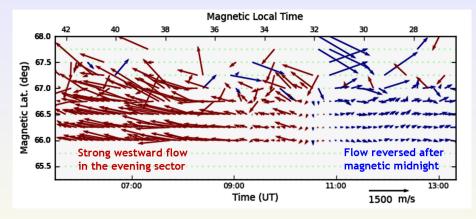

The main topics that I will present are:

- A description of the imaging Fabry-Perot spectrometer and the data it produces.
- A comparison of the zonal components of the neutral and ion drift velocities at F-region heights.
- Movies showing how the neutral and velocity vectors relate to the background aurora.
- Estimates of Joule heating and ion drag forcing derived from the combined PFISR and all-sky FPS data.
- An example of how 558nm Doppler temperatures can be used to indicate characteristic energy of the auroral precipitation.

■ overall ∽ < <>> Page: 3


Ion Velocities on Jan 24, 2010

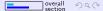
Question :


PFISR routinely observes westward ion drifts in the evening local time sector

• How does the neutral wind field respond to these ion drifts?

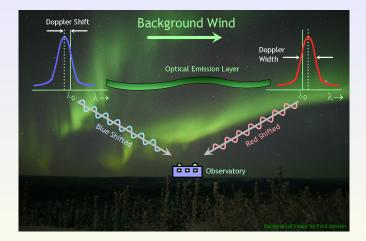
■ overall ∽ < <>> Page: 3

Ion Velocities on Jan 24, 2010


Question :

PFISR routinely observes westward ion drifts in the evening local time sector

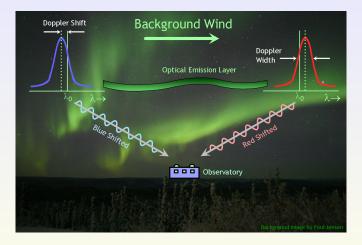
• How does the neutral wind field respond to these ion drifts?


We are using data from PFISR and from the Poker Flat all-sky Fabry-Perot spectrometer to study this question.

Page: 4

Passive Doppler Wind Measurement

Airglow or auroral photons appear *Doppler shifted* from the ground because they are emitted by atoms and molecules that move with the thermospheric wind.

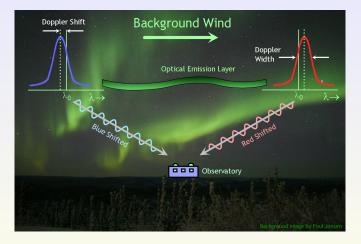

³Subject to some assumptions regarding the uniformity of the wind field. Alternatively, line-of-sight components may be combined from several geographically dispersed observing sites.

Page: 4

Passive Doppler Wind Measurement

Airglow or auroral photons appear *Doppler shifted* from the ground because they are emitted by atoms and molecules that move with the thermospheric wind.

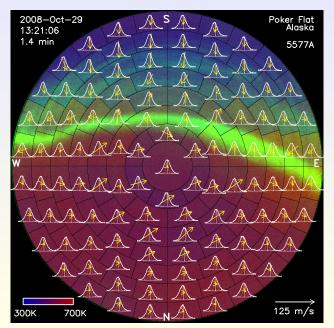
• While the Doppler shift only measures the line-of-sight wind component, the complete wind vector can be estimated by viewing in several directions.³


³Subject to some assumptions regarding the uniformity of the wind field. Alternatively, line-of-sight components may be combined from several geographically dispersed observing sites.

Page: 4

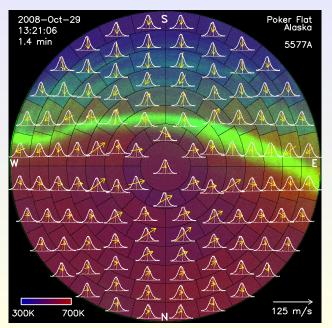
Passive Doppler Wind Measurement

Airglow or auroral photons appear *Doppler shifted* from the ground because they are emitted by atoms and molecules that move with the thermospheric wind.


- While the Doppler shift only measures the line-of-sight wind component, the complete wind vector can be estimated by viewing in several directions.³
- Further, temperatures may be inferred from the width of the Doppler spectrum.

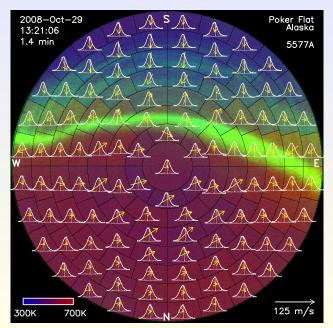
³Subject to some assumptions regarding the uniformity of the wind field. Alternatively, line-of-sight components may be combined from several geographically dispersed observing sites.

overall 🖉 ۹ Page: 5


All-Sky Doppler Imaging

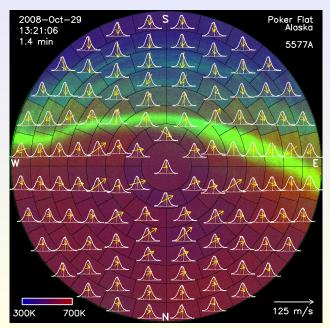
• The all-sky FPS scans its etalon gap to produce spectra over a wavelength interval of $\sim 10 \, \text{pm}$ at $\lambda = 630 \, \text{nm}$.

All-Sky Doppler Imaging


• The all-sky FPS scans its etalon gap to produce spectra over a wavelength interval of $\sim 10 \, \text{pm}$ at $\lambda = 630 \, \text{nm}$.

Page: 5

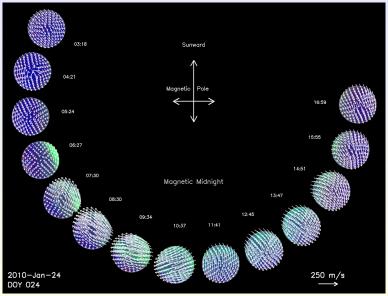
 This image shows λ558 nm spectra from 115 "zones" across the sky (white) together the measured instrumental passband in each zone (orange).



All-Sky Doppler Imaging

- The all-sky FPS scans its etalon gap to produce spectra over a wavelength interval of $\sim 10 \, \text{pm}$ at $\lambda = 630 \, \text{nm}$.
- This image shows λ558 nm spectra from 115 "zones" across the sky (white) together the measured instrumental passband in each zone (orange).
- Green hues depict the 558 nm brightness, whereas blue through red hues depict Doppler temperature.

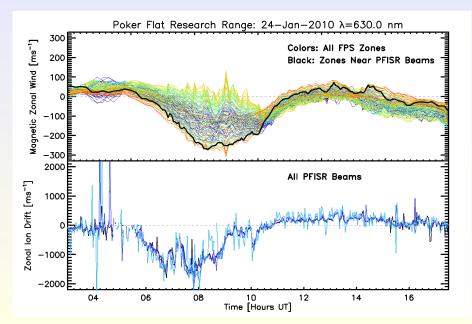
All-Sky Doppler Imaging

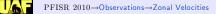


- The all-sky FPS scans its etalon gap to produce spectra over a wavelength interval of $\sim 10 \, \text{pm}$ at $\lambda = 630 \, \text{nm}$.
- This image shows λ558 nm spectra from 115 "zones" across the sky (white) together the measured instrumental passband in each zone (orange).
- Green hues depict the 558 nm brightness, whereas blue through red hues depict Doppler temperature.
- Yellow arrows show the fitted horizontal wind field.

🍸 Page: 6

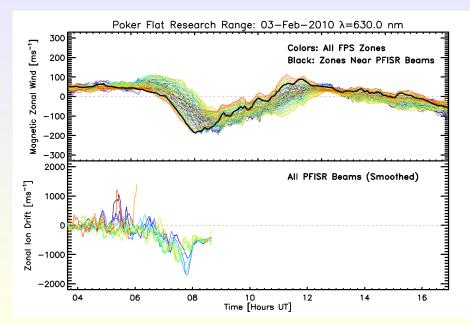
Neutral Winds on Jan 24, 2010

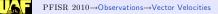

This figure shows neutral winds;⁴ Arrows pointing clockwise indicate westward flow.


 ^4At a degraded time resolution of \sim 1hour. The true time resolution of the data is as short as a few minutes.

ection overall

Ion and Neutral Zonal Velocity Components on Jan 24, 2010

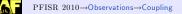

Neutral Winds and Ion Convection on Feb 03, 2010


- The left panel shows PFISR convection (cyan arrows), FPS neutral winds (yellow arrows), digital all-sky camera images at 558nm (green), and 630nm images from the FPS (red).
- The right panel shows the wind summary (dial) plot for this night, together with an updating "time index" arrow.

Ion and Neutral Zonal Velocity Components on Feb 03, 2010

Neutral Winds and Ion Convection on Feb 03, 2010

- This movie is in the same format as the previous one (which was for Jan 24.)
- Note that so far I only have ion convection data for the early part of the night but additional data is avaliable from later in this night, although it was recorded using a different radar mode.

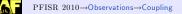


Ion-Neutral Coupling: Ion Drag & Joule Heating

Joule Heating

The volumetric power density deposited at heat into the atmosphere by $\ensuremath{\textit{Joule heating}}\xspace$ may be calculated from

$$\frac{\partial Q_J}{\partial t} = \mu_{ni} \overline{v}_{ni} n_n \left(\overrightarrow{\mathbf{u}}_n - \overrightarrow{\mathbf{u}}_i \right)^2 \quad \left[\text{units of } W \, \text{m}^{-3} \right]$$


Ion-Neutral Coupling: Ion Drag & Joule Heating

Joule Heating

The volumetric power density deposited at heat into the atmosphere by $\ensuremath{\textit{Joule heating}}\xspace$ may be calculated from

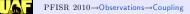
$$\frac{\partial Q_J}{\partial t} = \mu_{ni} \overline{v}_{ni} n_n \left(\overrightarrow{\mathbf{u}}_n - \overrightarrow{\mathbf{u}}_i \right)^2 \quad \left[\text{units of } W \, \mathrm{m}^{-3} \right]$$
(1)

where $\left\{ \begin{array}{l} n_n = \text{neutral number density} \\ \overrightarrow{\mathbf{u}}_n = \text{velocity vector of neutral bulk motion} \\ \overrightarrow{\mathbf{u}}_i = \text{velocity vector of ion bulk motion} \\ \overrightarrow{v}_{ni} = \text{mean frequency at which a neutral particle collides with ions} \\ \mu_{ni} = \text{ion/neutral reduced mass} = \frac{m_i m_n}{m_i + m_n} \end{array} \right.$

Ion-Neutral Coupling: Ion Drag & Joule Heating

Joule Heating

The volumetric power density deposited at heat into the atmosphere by $\ensuremath{\textit{Joule heating}}\xspace$ may be calculated from


$$\frac{\partial Q_J}{\partial t} = \mu_{ni} \overline{v}_{ni} n_n \left(\overrightarrow{\mathbf{u}}_n - \overrightarrow{\mathbf{u}}_i \right)^2 \quad \left[\text{units of } W \, \text{m}^{-3} \right]$$
(1)

where $\left\{ \begin{array}{l} n_n = \text{neutral number density} \\ \overrightarrow{\mathbf{u}}_n = \text{velocity vector of neutral bulk motion} \\ \overrightarrow{\mathbf{u}}_i = \text{velocity vector of ion bulk motion} \\ \overrightarrow{\mathbf{v}}_{ni} = \text{mean frequency at which a neutral particle collides with ions} \\ \mu_{ni} = \text{ion/neutral reduced mass} = \frac{m_i m_n}{m_i + m_n} \end{array} \right.$

Ion Drag

The corresponding rate of acceleration of the neutral gas by ion-neutral collisions is

$$\vec{\mathbf{a}}_{\text{ion-drag}} = \overline{\mathbf{v}}_{ni} \left(\vec{\mathbf{u}}_i - \vec{\mathbf{u}}_n \right)$$
(2)

overall တွင

Collision Frequency

• To apply Equations 1 and 2 requires an expression for collision frequency v_{ni} .

- To apply Equations 1 and 2 requires an expression for collision frequency v_{ni} .
- A useful empirical relation for ions and neutrals derived from atmospheric data is

$$\overline{v}_{ni} \simeq n_i \times 3.42 \times 10^{-17} \,\mathrm{m}^3 \sqrt{\frac{T}{1\mathrm{K}}} \times \left[\begin{array}{c} 1.08 - 0.139 \log_{10} \frac{T}{1\mathrm{K}} \\ +4.51 \times 10^{-3} \left(\log_{10} \frac{T}{1\mathrm{K}}\right)^2 \end{array}\right] \mathrm{Hz}$$
(3)

- To apply Equations 1 and 2 requires an expression for collision frequency v_{ni} .
- A useful empirical relation for ions and neutrals derived from atmospheric data is

$$\overline{v}_{ni} \simeq n_i \times 3.42 \times 10^{-17} \,\mathrm{m}^3 \sqrt{\frac{T}{1\,\mathrm{K}}} \times \left[\begin{array}{c} 1.08 - 0.139 \log_{10} \frac{T}{1\,\mathrm{K}} \\ +4.51 \times 10^{-3} \left(\log_{10} \frac{T}{1\,\mathrm{K}}\right)^2 \end{array}\right] \,\mathrm{Hz}$$
(3)

√ へ ○ Page: 12

overall

Using PFISR and the FPS to Study Ion Neutral Coupling

Combining data from PFISR and the all-sky FPS provides almost all the key parameters needed to estimate the rates at which ion convection is depositing energy and momentum into the neutrals:^a

- To apply Equations 1 and 2 requires an expression for collision frequency v_{ni} .
- A useful empirical relation for ions and neutrals derived from atmospheric data is

$$\overline{v}_{ni} \simeq n_i \times 3.42 \times 10^{-17} \,\mathrm{m}^3 \sqrt{\frac{T}{1\,\mathrm{K}}} \times \left[\begin{array}{c} 1.08 - 0.139 \log_{10} \frac{T}{1\,\mathrm{K}} \\ +4.51 \times 10^{-3} \left(\log_{10} \frac{T}{1\,\mathrm{K}}\right)^2 \end{array}\right] \,\mathrm{Hz}$$
(3)

√ へ ○ Page: 12

overall

Using PFISR and the FPS to Study Ion Neutral Coupling

Combining data from PFISR and the all-sky FPS provides almost all the key parameters needed to estimate the rates at which ion convection is depositing energy and momentum into the neutrals:^a

Ion Velocity: Obtained from PFISR.

- To apply Equations 1 and 2 requires an expression for collision frequency v_{ni} .
- A useful empirical relation for ions and neutrals derived from atmospheric data is

$$\overline{v}_{ni} \simeq n_i \times 3.42 \times 10^{-17} \,\mathrm{m}^3 \sqrt{\frac{T}{1\,\mathrm{K}}} \times \left[\begin{array}{c} 1.08 - 0.139 \log_{10} \frac{T}{1\,\mathrm{K}} \\ +4.51 \times 10^{-3} \left(\log_{10} \frac{T}{1\,\mathrm{K}}\right)^2 \end{array}\right] \,\mathrm{Hz}$$
(3)

Using PFISR and the FPS to Study Ion Neutral Coupling

Combining data from PFISR and the all-sky FPS provides almost all the key parameters needed to estimate the rates at which ion convection is depositing energy and momentum into the neutrals:^a

Ion Velocity: Obtained from PFISR. Neutral Velocity: Obtained from the all-sky FPS.

- To apply Equations 1 and 2 requires an expression for collision frequency v_{ni} .
- A useful empirical relation for ions and neutrals derived from atmospheric data is

$$\overline{v}_{ni} \simeq n_i \times 3.42 \times 10^{-17} \,\mathrm{m}^3 \sqrt{\frac{T}{1\,\mathrm{K}}} \times \left[\begin{array}{c} 1.08 - 0.139 \log_{10} \frac{T}{1\,\mathrm{K}} \\ +4.51 \times 10^{-3} \left(\log_{10} \frac{T}{1\,\mathrm{K}}\right)^2 \end{array}\right] \,\mathrm{Hz}$$
(3)

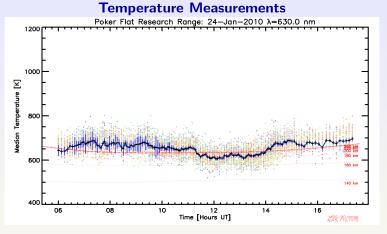
Using PFISR and the FPS to Study Ion Neutral Coupling

Combining data from PFISR and the all-sky FPS provides almost all the key parameters needed to estimate the rates at which ion convection is depositing energy and momentum into the neutrals:^a

Ion Velocity: Obtained from PFISR.Neutral Velocity: Obtained from the all-sky FPS.Temperature: Obtained from the all-sky FPS.

- To apply Equations 1 and 2 requires an expression for collision frequency v_{ni} .
- A useful empirical relation for ions and neutrals derived from atmospheric data is

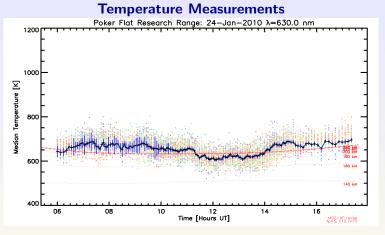
$$\overline{v}_{ni} \simeq n_i \times 3.42 \times 10^{-17} \,\mathrm{m}^3 \sqrt{\frac{T}{1\,\mathrm{K}}} \times \left[\begin{array}{c} 1.08 - 0.139 \log_{10} \frac{T}{1\,\mathrm{K}} \\ +4.51 \times 10^{-3} \left(\log_{10} \frac{T}{1\,\mathrm{K}}\right)^2 \end{array}\right] \,\mathrm{Hz}$$
(3)


overall

Using PFISR and the FPS to Study Ion Neutral Coupling

Combining data from PFISR and the all-sky FPS provides almost all the key parameters needed to estimate the rates at which ion convection is depositing energy and momentum into the neutrals:^a

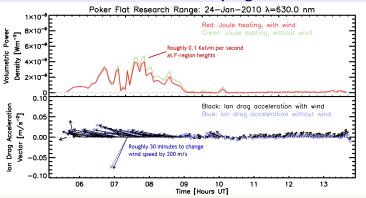
Ion Velocity: Obtained from PFISR.
Neutral Velocity: Obtained from the all-sky FPS.
Temperature: Obtained from the all-sky FPS.
Electron Density: Obtained from PFISR.


^aNeutral densities must still be obtained from MSIS

overall section

• To calculate \overline{v}_{ni} we can use 630nm Doppler temperatures recorded by the all-sky FPS. Small dots show all individual temperature measurements,⁵ color-coded by viewing zone number.

 $^{^{5}}$ Excluding those rejected either because the signal/noise ratio of the original spectrum was too low, or the chi-squared value of the spectral fit was too high.

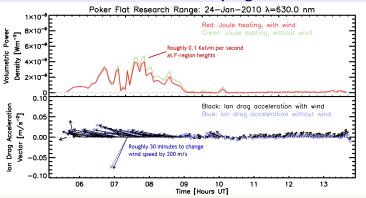

overall section

- To calculate \overline{v}_{ni} we can use 630nm Doppler temperatures recorded by the all-sky FPS. Small dots show all individual temperature measurements,⁵ color-coded by viewing zone number.
- The heavy curves show the all-sky median temperature obtained from each successive exposure; error bars indicate the uncertainty in the mean.

 $^{^{5}}$ Excluding those rejected either because the signal/noise ratio of the original spectrum was too low, or the chi-squared value of the spectral fit was too high.

Ion Neutral Coupling

overall section

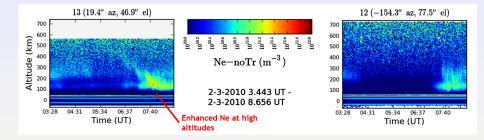


- This figure shows the result of using combined PFISR⁶ and all-sky FPS data to estimate rates at which ion convection deposited energy and momentum deposition into the neutral atmosphere on the night of Jan 24, 2010.
- The fainter background data in each panel indicate the results that would be obtained by assuming zero neutral wind.

⁶Note that I did not have the PFISR electron densities in digital at the time I made this plot. So for illustration purposes I just approximated that $n_e \sim 10^{11} \text{ m}^{-3}$.

Ion Neutral Coupling

overall section

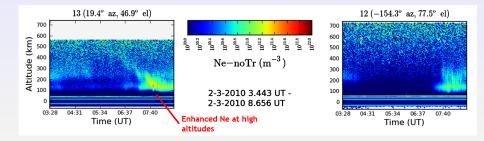

- This figure shows the result of using combined PFISR⁶ and all-sky FPS data to estimate rates at which ion convection deposited energy and momentum deposition into the neutral atmosphere on the night of Jan 24, 2010.
- The fainter background data in each panel indicate the results that would be obtained by assuming zero neutral wind.
- Note that these data are for F-region heights (around 250km altitude.)

⁶Note that I did not have the PFISR electron densities in digital at the time I made this plot. So for illustration purposes I just approximated that $n_{e} \sim 10^{11} \text{ m}^{-3}$.

overall section

) < (~ Page: 15

Electron Densities on Feb 03, 2010

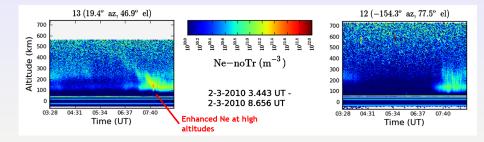

• The Fabry-Perot has a filter wheel, and can execute arbitrary sequences of exposures through up to six different filters. Typically it alternates between 630nm and 558nm during full darkness.⁷

⁷The normal night time mode cycles repeatedly through the sequence "red, green, red, green, laser". During dusk and dawn twilights an alternate sequence is used: "sodium, sodium, laser".

overall

) < (~ Page: 15

Electron Densities on Feb 03, 2010

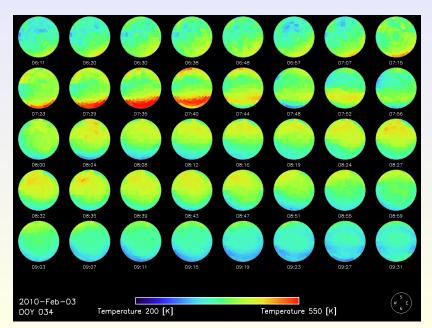

- The Fabry-Perot has a filter wheel, and can execute arbitrary sequences of exposures through up to six different filters. Typically it alternates between 630nm and 558nm during full darkness.⁷
- The 558nm Doppler temperature data provide a useful proxy for the characteristic energy of auroral electons; high temperatures indicate low energies, and vica versa.

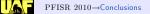
⁷The normal night time mode cycles repeatedly through the sequence "red, green, red, green, laser". During dusk and dawn twilights an alternate sequence is used: "sodium, sodium, laser".

overall section

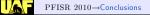
) < (~ Page: 15

Electron Densities on Feb 03, 2010

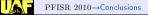



- The Fabry-Perot has a filter wheel, and can execute arbitrary sequences of exposures through up to six different filters. Typically it alternates between 630nm and 558nm during full darkness.⁷
- The 558nm Doppler temperature data provide a useful proxy for the characteristic energy of auroral electons; high temperatures indicate low energies, and vica versa.
- Note the elevated electron densities that appear in the lower F-region at around 07:40 UT in the PFISR data shown here. Presumably this indicates soft precipitation, for which we'd expect elevated 558nm Doppler temperatures.

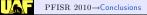
⁷The normal night time mode cycles repeatedly through the sequence "red, green, red, green, laser". During dusk and dawn twilights an alternate sequence is used: "sodium, sodium, laser".



558 nm Doppler Temperatures on Feb 03, 2010



• Obvious signatures of ion neutral momentum coupling are frequently seen in the all-sky FPS data.



overall section	$\mathcal{O}\mathcal{Q}$	Page:	17
-----------------	--------------------------	-------	----

- Obvious signatures of ion neutral momentum coupling are frequently seen in the all-sky FPS data.
- Comaprison with PFISR indicates that westward neutral flows (and their associated meridional shear) are due to momentum deposited in the neutrals by westward ion convection.

- Obvious signatures of ion neutral momentum coupling are frequently seen in the all-sky FPS data.
- Comaprison with PFISR indicates that westward neutral flows (and their associated meridional shear) are due to momentum deposited in the neutrals by westward ion convection.
- Merged FPS and PFISR data will provide an excellent new diagnostic tool for studying ion-neutral coupling in the F-region.

- Obvious signatures of ion neutral momentum coupling are frequently seen in the all-sky FPS data.
- Comaprison with PFISR indicates that westward neutral flows (and their associated meridional shear) are due to momentum deposited in the neutrals by westward ion convection.
- Merged FPS and PFISR data will provide an excellent new diagnostic tool for studying ion-neutral coupling in the F-region.

I have only touched briefly on what is produced by the all sky FPS – *there are MANY more data products available:*

 Summary plots of each night's all-sky FPS data are freely available on the web, and may be browsed at:

http://fulcrum.gi.alaska.edu/conde/sdi_arc.asp

 Multiple near-real-time plots are also available (with around 15min latency) at:

http://fulcrum.gi.alaska.edu/conde/pkr_realtime_sdi_plots.asp